Exercise 22

Let $\mathbf{u}=(1,2), \mathbf{v}=(-3,4)$, and $\mathbf{w}=(5,0)$:
(a) Draw these vectors in \mathbb{R}^{2}.
(b) Find scalars λ_{1} and λ_{2} such that $\mathbf{w}=\lambda_{1} \mathbf{u}+\lambda_{2} \mathbf{v}$.

Solution

Part (a)
The three vectors are illustrated below.

Part (b)

The aim is to find scalars, λ_{1} and λ_{2}, that satisfy $\mathbf{w}=\lambda_{1} \mathbf{u}+\lambda_{2} \mathbf{v}$.

$$
\begin{aligned}
(5,0) & =\lambda_{1}(1,2)+\lambda_{2}(-3,4) \\
& =\left(\lambda_{1}, 2 \lambda_{1}\right)+\left(-3 \lambda_{2}, 4 \lambda_{2}\right) \\
& =\left(\lambda_{1}-3 \lambda_{2}, 2 \lambda_{1}+4 \lambda_{2}\right)
\end{aligned}
$$

The respective components of each vector are equal.

$$
\begin{aligned}
& 5=\lambda_{1}-3 \lambda_{2} \\
& 0=2 \lambda_{1}+4 \lambda_{2}
\end{aligned}
$$

Solving this system of equations yields $\lambda_{1}=2$ and $\lambda_{2}=-1$. Therefore, $\mathbf{w}=2 \mathbf{u}-\mathbf{v}$.

